A characterization of L3(4) by its character degree graph and order

نویسندگان

  • Shitian Liu
  • Yunxia Xie
چکیده

Let G be a finite group. The character degree graph [Formula: see text] of G is the graph whose vertices are the prime divisors of character degrees of G and two vertices p and q are joined by an edge if pq divides the character degree of G. Let [Formula: see text] be the projective special linear group of degree n over a finite field of order q. Khosravi et. al. have shown that the simple groups [Formula: see text], and [Formula: see text] where [Formula: see text] are characterizable by the degree graphs and their orders. In this paper, we give a characterization of [Formula: see text] by using the character degree graph and its order.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Characterization of projective special linear groups in dimension three by their orders and degree patterns

The prime graph $Gamma(G)$ of a group $G$ is a graph with vertex set $pi(G)$, the set of primes dividing the order of $G$, and two distinct vertices $p$ and $q$ are adjacent by an edge written $psim q$ if there is an element in $G$ of order $pq$. Let $pi(G)={p_{1},p_{2},...,p_{k}}$. For $pinpi(G)$, set $deg(p):=|{q inpi(G)| psim q}|$, which is called the degree of $p$. We also set $D(G):...

متن کامل

Diameter Two Graphs of Minimum Order with Given Degree Set

The degree set of a graph is the set of its degrees. Kapoor et al. [Degree sets for graphs, Fund. Math. 95 (1977) 189-194] proved that for every set of positive integers, there exists a graph of diameter at most two and radius one with that degree set. Furthermore, the minimum order of such a graph is determined. A graph is 2-self- centered if its radius and diameter are two. In this paper for ...

متن کامل

OD-characterization of Almost Simple Groups Related to displaystyle D4(4)

Let $G$ be a finite group and $pi_{e}(G)$ be the set of orders of all elements in $G$. The set $pi_{e}(G)$ determines the prime graph (or Grunberg-Kegel graph) $Gamma(G)$ whose vertex set is $pi(G)$, the set of primes dividing the order of $G$, and two vertices $p$ and $q$ are adjacent if and only if $pqinpi_{e}(G)$. The degree $deg(p)$ of a vertex $pin pi(G)$, is the number of edges incident...

متن کامل

Vertex Decomposable Simplicial Complexes Associated to Path Graphs

Introduction Vertex decomposability of a simplicial complex is a combinatorial topological concept which is related to the algebraic properties of the Stanley-Reisner ring of the simplicial complex. This notion was first defined by Provan and Billera in 1980 for k-decomposable pure complexes which is known as vertex decomposable when . Later Bjorner and Wachs extended this concept to non-pure ...

متن کامل

OD-Characterization of almost simple groups related to $L_{3}(25)$

Let $G$ be a finite group and $pi(G)$ be the set of all the prime‎ ‎divisors of $|G|$‎. ‎The prime graph of $G$ is a simple graph‎ ‎$Gamma(G)$ whose vertex set is $pi(G)$ and two distinct vertices‎ ‎$p$ and $q$ are joined by an edge if and only if $G$ has an‎ ‎element of order $pq$‎, ‎and in this case we will write $psim q$‎. ‎The degree of $p$ is the number of vertices adjacent to $p$ and is‎ ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 5  شماره 

صفحات  -

تاریخ انتشار 2016